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Abstract
Decoherence of quantum information carried by single-mode and two-mode
Gaussian states is investigated under the influence of non-Markovian quantum
channels, where correlation times of reservoir variables are assumed to take
finite values. Degradation of purity, distinguishability and non-classicality
of single-mode Gaussian states and relaxation of entanglement of two-mode
Gaussian states are examined. The results show the importance of the non-
Markovian effect of a thermal reservoir. Furthermore, continuous variable
quantum teleportation is considered when a sender and a receiver share a two-
mode Gaussian state through non-Markovian quantum channels.

PACS numbers: 03.67.Hk, 03.67.Mn, 03.65.Yz

1. Introduction

There have been considerable advances in the field of the quantum information science [1, 2].
Among others, quantum information processing is essential in quantum cryptography, quantum
communication and quantum computation. These are important not only in information
technology, but also in the basic principles of quantum mechanics. Quantum states that
carry information, however, are quite fragile under the influence of a thermal reservoir
(an external environmental system) which causes decoherence of quantum information.
When quantum information processing is performed in the real world, the quantum systems
inevitably suffer losses of purity, distinguishability, non-classicality, entanglement and so on.
Decoherence of quantum states is investigated by means of the several methods ranging
from the phenomenological theory to the microscopic theory. In the phenomenological
treatments [3–7], the loss of coherence is characterized by the several energy and phase
relaxation times. These phenomenological methods are extended to treat the dynamical
effects of a thermal reservoir in terms of stochastic processes, typical examples of which
are the Gauss–Markov process and the two-state jump Markov process [8–12]. In the
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microscopic approach, the environment itself is considered to be a quantum system with
quantum mechanical reservoir variables which are to be eliminated, for example, by means
of the projection operator method [13–16] or by the path integral method [17]. Although
in many cases, the Markovian approximation is assumed when the reservoir variables are
eliminated, it has recently been shown that the non-Markovian effect plays an important role
in the relaxation process of quantum information [18–24]. In particular, when a high-speed
quantum information processing is required, the non-Markovian effect becomes essential
since the characteristic time of dynamics of the relevant system may be comparable with the
reservoir correlation time.

The present author has recently considered the non-equilibrium dynamics of quantum
information of qubits by means of the phenomenological method [7], the stochastic method
[25] and the microscopic method [26]. In particular, the microscopic theory shows that the
non-Markovian effect is very important in quantum information processing of qubits. Thus, in
this paper, we extend the non-Markovian theory of decoherence [26] so that it can treat quantum
information processing of continuous variables. The continuous variable quantum information
processing that uses quantum optical phenomena can implement quantum cryptography [27],
quantum teleportation [28, 29], quantum dense coding [30, 31], entanglement swapping
[32] and quantum computation [33]. The effects of an external environmental system on
the continuous variable quantum information processing have been investigated in detail
within the Markovian approximation [34–36]. Therefore, we will investigate decoherence
of continuous variable quantum information under the influence of a non-Markovian thermal
reservoir, using the microscopic approach which assumes a system–reservoir interaction and
applies the projector operator method to eliminate the reservoir variables with finite correlation
time. This paper is organized as follows. In section 2, using the projection operator method,
we derive a non-Markovian quantum channel for bosonic systems and we briefly summarize
the basic properties. In section 3, we investigate decay of purity, distinguishability and non-
classicality of single-mode Gaussian states caused by the non-Markovian quantum channel.
In section 4, we obtain the entanglement of formation of symmetric two-mode Gaussian states
in the non-Markovian quantum channel to evaluate decoherence of entanglement. The results
show that the non-Markovian effect suppresses the decoherence of quantum information. In
section 5, we investigate the condition that the non-Markovian quantum channel becomes
an entanglement-breaking channel. In section 6, we consider the quantum teleportation of
continuous variables that is performed under the influence of the non-Markovian thermal
reservoir and calculate the fidelity to show how faithfully a Gaussian state is teleported. We
give concluding remarks in section 7.

2. The non-Markovian quantum channel for bosonic systems

In this section, making use of the projection operator method [13–15] that yields a time-
convolutionless quantum master equation of a reduced density operator, we derive a non-
Markovian quantum channel for bosonic systems that is used for investigating decoherence in
information processing of continuous variables. A quantum state Ŵ (t) of a relevant system
and thermal reservoir is subject to the Liouville–von Neumann equation

∂

∂t
Ŵ (t) = − i

h̄
[Ĥ S + Ĥ R + Ĥ SR, Ŵ (t)], (1)

where Ĥ S = h̄ωâ†â and Ĥ R are the Hamiltonians of the relevant system and thermal reservoir,
respectively, and Ĥ SR is the interaction Hamiltonian between them, where â and â† are bosonic
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annihilation and creation operators of the relevant system, respectively. We assume that the
interaction Hamiltonian Ĥ SR is given by

Ĥ SR = h̄λ(â†R̂ + âR̂†), (2)

where R̂ represents some operator of the thermal reservoir and the parameter λ is the coupling
constant. The system–reservoir interaction Hamiltonian Ĥ SR is convenient to make clear
the non-Markovian effects on the decoherence of quantum information since the derived
non-Markovian master equation becomes identical with the well-known Markovian master
equation of the Lindblad form when the correlation time of the thermal reservoir is sufficiently
short. However, the interaction Hamiltonian Ĥ SR is not unique. The non-Markovian effects
obtained by the exactly solvable model in which the system–reservoir interaction Hamiltonian
has the form Ĥ SR = λ(â + â†)(R̂ + R̂†) has been investigated in detail [37, 38]. Moreover, the
difference approaches to the non-Markovian relaxation have been given [40, 41].

When we apply the projection operator method to eliminate the reservoir variables from
equation (1), we can obtain the time-convolutionless quantum master equation of the relevant
system up to the second order (the non-trivial lowest order) with respect to the system–reservoir
coupling constant λ

∂

∂t
ρ̂(t) = −iω[â†â, ρ̂(t)] + φ∗

+ −(t)[â†, ρ̂(t)â] + φ+ −(t)[â†ρ̂(t), â]

+ φ∗
− +(t)[â, ρ̂(t)â†] + φ− +(t)[âρ̂(t), â†], (3)

where ρ̂(t) = TrR Ŵ (t) is the reduced density operator of the relevant system and TrR indicates
the trace operation over the Hilbert space of the thermal reservoir. The functions φ+ −(t) and
φ− +(t) which determine the relaxation process are given by

φ+ −(t) = λ2
∫ t

0
dτ e−iωτ 〈R̂†(τ )R̂(0)〉R (4)

φ− +(t) = λ2
∫ t

0
dτ eiωτ 〈R̂(τ )R̂†(0)〉R, (5)

where 〈· · ·〉R stands for the average value in the equilibrium state of the thermal reservoir. In
the Markovian limit (or equivalently the narrowing limit), the functions φ+ −(t) and φ− +(t)

are replaced with φ+ −(∞) and φ− +(∞), respectively, in equation (3). The imaginary parts of
the functions φ+ −(t) and φ− +(t) contribute to the frequency shift of the relevant system and
they are irrelevant to the decoherence. Hence in the rest of this paper, we may assume that the
functions φ+ −(t) and φ− +(t) are real and we may ignore the unitary part of the time-evolution.

To solve the time-convolutionless quantum master equation (3), we introduce the s-ordered
quasi-probability distribution Fs(t; z) [39, 42] which represents the quantum state ρ̂(t) of the
relevant system,

Fs(t; z) = Tr [T̂ (z;−s)ρ̂] ρ̂(t) =
∫

d2z

π
Fs(t; z)T̂ (z; s) (6)

with

T̂ (z; s) =
∫

d2α

π
D̂(α) e

1
2 s|α|2−αz∗+α∗z, (7)

where D̂(α) = eαâ†−α∗â is the displacement operator. In particular, the functions F−1(t; z),

F0(t; z) and F1(t; z) are the Glauber–Sudarshan P-function, the Wigner function and the
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Husimi–Kano Q-function. The s-ordered quasi-probability distribution Fs(t; z) has the
property

〈{â†mân}s〉t = Tr[{â†mân}s ρ̂(t)] =
∫

d2z

π
z∗mznFs(t; z), (8)

where the s-ordered product of annihilation and creation operators is defined by

{â†mân}s = ∂m+n

∂zm∂(−z∗)n
ezâ†−z∗â+ 1

2 s|z|2
∣∣∣∣
z=0

. (9)

When the quantum state ρ̂(t) obeys the quantum master equation (3), the quasi-probability
distribution Fs(t; z) is subject to the differential equation

∂

∂t
Fs(t; z) = [φ− +(t) − φ+ −(t)]

(
∂

∂z
z +

∂

∂z∗ z∗
)

Fs(t; z)

+ [(1 + s)φ− +(t) + (1 − s)φ+ −(t)]

(
∂2

∂z∂z∗

)
Fs(t; z) (10)

the solution of which is given by

Fs(t; z) =
∫

d2z′

π
Gs(t; z|t ′; z′)Fs(t

′; z′), (11)

where the Green function Gs(t; z|t ′; z′) is

Gs(t; z|t ′; z′) = 1

	s(t, t ′)
exp

[
−|z − z′ e−
(t,t ′)|2

	s(t, t ′)

]
(12)

with


(t, t ′) =
∫ t

t ′
dτ [φ− +(τ ) − φ+ −(τ )] (13)

	s(t, t
′) =

∫ t

t ′
dτ [(1 + s)φ− +(τ ) + (1 − s)φ+ −(τ )] e−2
(t,τ ). (14)

Equations (11)–(14) are derived in the appendix. Equations (11) and (12) define the non-
Markovian quantum channel in the phase space. Since it transforms a Gaussian state into
another Gaussian state, it is called the Gaussian channel.

To proceed further, we must determine the functions φ+ −(t) and φ− +(t) given by
equations (4)–(5). We assume here that the correlation functions of the reservoir variables
decay exponentially with time t [26]

λ2〈R̂†(t)R̂(0)〉R = 1

τR

G+ − eiω′t−t/τR (15)

λ2〈R̂(t)R̂†(0)〉R = 1

τR

G− + e−iω′t−t/τR , (16)

where G+ − = G∗
− + = λ2〈R̂†(0)R̂(0)〉R and ω′ is some frequency of the reservoir variable and

τR is the reservoir correlation time. Then the functions φ+ −(t) and φ− +(t) are expressed as

φ+ −(t) = φ+ −(∞)(1 − e−t/τR−i(ω−ω′)t ) (17)

φ− +(t) = φ− −(∞)(1 − e−t/τR+i(ω−ω′)t ). (18)



Decoherence of continuous variable quantum information in non-Markovian channels 1931

Here, it is noted that we have φ+ −(t) ≈ φ+ −(∞) and φ− +(t) ≈ φ− +(∞) in the Markovian
approximation (τR → 0). When we assume the resonant ω = ω′ or nearly resonant such that
|ω − ω′|/τR � 1, the functions φ− +(t) and φ+ −(t) become

φ− +(t) = κτR(n̄th + 1)ḟ (t) φ+ −(t) = κτRn̄thḟ (t), (19)

where ḟ (t) = df (t)/dt and the non-negative function f (t) is given by

f (t) = t

τR

− 1 + e−t/τR (20)

and κ is a positive constant and n̄th = (eh̄ω/kBT − 1)−1. In deriving equation (19), we have
used φ+ −(∞) = κn̄th and φ− +(∞) = κ(n̄th + 1). Then, in the limit of τR → 0, equation (3)
reduces to the well-known Markovian quantum master equation of the Lindblad form.

When the functions φ− +(t) and φ+ −(t) are given by equation (19), the Green function
G(t; z|t ′; z′) is simplified as

Gs(t; z|t ′; z′) = 1(
n̄th + 1+s

2

)(
1 − γ 2

t−t ′
) exp

[
− |z − z′γt−t ′ |2(

n̄th + 1+s
2

)(
1 − γ 2

t−t ′
)
]

(21)

with

γt = e−κτRf (t). (22)

For two-mode states, each mode of which is affected by the different thermal reservoir, the
s-ordered quasi-probability distribution Fs(t1, t2; z1, z2) is given by

Fs(t1, t2; z1, z2) =
∫

d2z′
1

π

∫
d2z′

2

π
G1s(t1; z1|t ′1; z′

1)G2s(t2; z2|t ′2; z′
2)Fs(t

′
1, t

′
2; z′

1, z
′
2). (23)

The function Gks(t; z|t ′; z′) is obtained from equation (21) by replacing the parameters
κ, τR, n̄th with κk, τkR, n̄kth (k = 1, 2). In equation (23), tk is the transmission time of
the kth mode through the non-Markovian quantum channel. The characteristic function which
determines the statistical properties of a quantum state is the Fourier transformation of the
Wigner function. Then the characteristic functions C(t;α) and C(t1, t2;α1, α2) of single-mode
and two-mode states in the non-Markovian quantum channel are calculated to be

C(t;α) = G(α; t)C(0;αγt ) (24)

and

C(t1, t2;α1, α2) = G1(α1; t1)G2(α2; t2)C(0, 0;α1γ1t , α2γ2t ), (25)

where the function Gk(α; t) is given by

Gk(α; t) = exp
[−(

n̄kth + 1
2

)(
1 − γ 2

kt

)|α|2] (26)

with γkt = e−κkτkRfk(t). In equations (24) and (25), we have assumed that the initial time is
zero.

3. Degradation of purity, distinguishability and non-classicality

In this section, we investigate degradation of purity, distinguishability and non-classicality
of single-mode Gaussian states under the influence of the non-Markovian quantum channel
defined by equations (11) and (21). In the Markovian limit (τR → 0), several authors have
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considered them in detail [35, 36]. A single-mode Gaussian state is completely characterized
by three parameters α = 〈â〉, n̄ = 〈	â†	â〉 and m̄ = −〈(	â)2〉 with 	â = â − 〈â〉.
The s-ordered quasi-probability distribution function Fs(0; z) which represents a single-mode
Gaussian state can be written in the form

Fs(0; z) =
√

det Ws exp
[− 1

2 (z − a)†Ws(z − a)
]
, (27)

where z = (z∗, z)† and a = (α∗, α)† and the 2 × 2 Hermitian matrix Ws is

Ws = 1(
n̄ + 1+s

2

)2 − |m̄|2
(

n̄ + 1+s
2 m̄

m̄∗ n̄ + 1+s
2

)
. (28)

The uncertainty relation requires the inequality n̄(n̄ + 1) � |m̄|2, where the equality holds for
pure Gaussian states. Furthermore, a single-mode Gaussian state is non-classical if and only
if the inequality n̄ < |m̄| holds, where the analytic Glauber–Sudarshan P-function does not
exist. Substituting equation (27) into equation (11) and applying equations (19) and (20), we
can obtain the s-ordered quasi-probability distribution Fs(t; z) in the non-Markovian quantum
channel

Fs(t; z) =
√

det Ws(t) exp
(− 1

2 [z − a(t)]†Ws(t)[z − a(t)]
)
, (29)

where a(t) and Ws(t) are obtained by replacing α, n̄ and m̄ in a and Ws with

α(t) = αγt n̄(t) = n̄th + (n̄ − n̄th)γ
2
t m̄(t) = m̄γ 2

t . (30)

Using the s-ordered quasi-probability distribution Fs(t; z), we can investigate the decoherence
of single-mode Gaussian states caused by the non-Markovian quantum channel.

3.1. Decay of purity of a single-mode Gaussian state

Purity of a quantum state ρ̂ can be measured by means of the linear entropy SL(ρ̂) = 1−Tr ρ̂2.
For pure states, we have SL(ρ̂) = 0. The linear entropy SL(ρ̂(t)) of a single-mode Gaussian
state in the non-Markovian quantum channel is given by

SL(ρ̂(t)) = 1 −
∫

d2z

π
F 2

s=0(t; z)

= 1 − 1√
[2n̄(t) + 1]2 − 4|m̄(t)|2

. (31)

In particular, when the initial Gaussian state is pure, where the equality n̄(n̄ + 1) = |m̄|2 holds,
the linear entropy SL(ρ̂(t)) becomes

SL(ρ̂(t)) = 1 − 1√
1 + 4

(
1 − γ 2

t

)[
n̄th(n̄th + 1)

(
1 + γ 2

t

)
+ (2n̄th + 1)(n̄ − n̄th)γ

2
t

] (32)

which is plotted in figure 1. The figure clearly shows that the non-Markovian effect of the
thermal reservoir suppresses the degradation of purity of single-mode Gaussian states.

3.2. Decay of distinguishability of a single-mode Gaussian state

One of the distinguishability measures between two quantum states ρ̂1 and ρ̂2 is the fidelity
F(ρ̂1, ρ̂2) given by

F(ρ̂1, ρ̂2) = [
Tr

(
ρ̂

1/2
1 ρ̂2ρ̂

1/2
1

)1/2]2
. (33)
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Figure 1. The linear entropy of the single-mode Gaussian state with n̄ = 4.0 under the influence
of the non-Markovian quantum channel, where (a) n̄th = 6.0, (b) n̄th = 1.0, (c) n̄th = 0.5 and
(d) n̄th = 0.0. In the figures, the solid line represents κτR = 2.0, the dotted line κτR = 1.0, the
short-dashed line κτR = 0.5, the dashed line κτR = 0.2 and the dash-dotted line κτR = 0.0. The
last corresponds to the Markovian limit.

For two Gaussian states characterized by the parameters αk, n̄k and m̄k (k = 1, 2), the fidelity
F(ρ̂1, ρ̂2) can be analytically calculated [43]. In particular, when α1 = α2, we obtain

F(ρ̂1, ρ̂2) = 1√
X + Y − √

X
(34)

with

X = 2[n̄1(n̄1 + 1) − |m̄1|2][n̄2(n̄2 + 1) − |m̄2|2] (35)

Y = (n̄1 + n̄2 + 1)2 − |m̄1 + m̄2|2. (36)

When we assume that n̄1 = n̄2 = n̄ and m̄1 = −m̄2 = √
n̄(n̄ + 1) for the initial Gaussian

states, the fidelity between the two Gaussian states in the non-Markovian quantum channel
is obtained by substituting n̄k → n̄th + (n̄ − n̄th)γ

2
t (k = 1, 2), m̄1 → √

n̄(n̄ + 1)γ 2
t and

m̄2 → −√
n̄(n̄ + 1)γ 2

t in equations (34)–(36). In this case, the fidelity is plotted in figure 2.
It is found from the figure that decay of the distinguishability between single-mode Gaussian
states is made smaller by the non-Markovian effect of the thermal reservoir.

3.3. Decay of non-classicality of a single-mode Gaussian state

To measure the non-classicality of a quantum state, we can use the non-classical depth τc which
is defined as the minimum value of the thermal noise necessary for the Glauber–Sudarshan
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Figure 2. The fidelity between the two Gaussian states with n̄ = 4.0 under the influence of
the non-Markovian quantum channel, where (a) n̄th = 6.0, (b) n̄th = 1.0, (c) n̄th = 0.5 and
(d) n̄th = 0.0. In the figures, the solid line represents κτR = 2.0, the dotted line κτR = 1.0, the
short-dashed line κτR = 0.5, the dashed line κτR = 0.2 and the dash-dotted line κτR = 0.0. The
last corresponds to the Markovian limit.

P-function to be non-negative and less singular than δ-function [44]. Let P(z) = Fs=−1(0; z)

be the Glauber–Sudarshan P-function of a quantum state ρ̂ and we introduce the function
R(z) by

R(z) = 1

τ

∫
d2z′

π
e−|z−z′ |2/τP (z′). (37)

Then the non-classical depth τc of the quantum state ρ̂ is given by the minimum value of τ

such that the function R(z) is non-negative and less singular than the δ-function. It is easy to
see that the parameter s which determines the operator ordering is related to τ by the relation

2τ = 1 + s. (38)

For single-mode Gaussian states, the s-ordered quasi-probability distribution function becomes
non-singular if the inequality n̄ + (1 + s)/2 � |m̄| holds. Hence, the non-classical depth τc of
a single-mode Gaussian state is given by

τc = max[|m̄| − n̄, 0]. (39)

For the initial Gaussian state with the non-classical depth τc(0), we obtain the non-classical
depth τc(t) of the Gaussian state at time t under the influence of the non-Markovian quantum
channel

τc(t) = max[|m̄(t)| − n̄(t), 0]

= max
[
τc(0)γ 2

t − n̄th
(
1 − γ 2

t

)
, 0

]
. (40)
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Figure 3. The non-classical depth of the single-mode Gaussian state with τc(0) = 1.0 under the
influence of the non-Markovian quantum channel, where (a) n̄th = 0.0, (b) n̄th = 0.1, (c) n̄th = 0.5
and (d) n̄th = 2.0. In the figures, the solid line represents κτR = 2.0, the dotted line κτR = 1.0,
the short-dashed line κτR = 0.5, the dashed line κτR = 0.2 and the dash-dotted line κτR = 0.0.
The last corresponds to the Markovian limit.

This result shows that if the temperature of the thermal reservoir is zero and the initial Gaussian
state has the non-zero non-classical depth, the quantum state is always non-classical in the non-
Markovian quantum channel. The non-classical depth of single-mode Gaussian states under
the influence of the non-Markovian quantum channel is plotted in figure 3. The non-Markovian
effect of the thermal reservoir makes longer the survival time of the non-classicality of a single-
mode Gaussian state. The results obtained in this section show that the non-Markovian effect
suppresses the decoherence of purity, distinguishability and non-classicality of single-mode
Gaussian states.

4. Decoherence of entanglement of two-mode Gaussian states

In this section, calculating the entanglement of formation, we investigate the decoherence
of entanglement of a two-mode Gaussian state under the influence of the non-Markovian
quantum channel. Since the average values 〈âk〉 (k = 1, 2) of the annihilation operator of
the each mode does not affect the entanglement, we can assume 〈âk〉 = 0 without any loss
of generality. Then a two-mode Gaussian state is, in general, characterized by parameters
n̄k = 〈

â
†
kâk

〉
, m̄k = −〈

â2
k

〉
, m̄c = −〈â1â2〉 and m̄s = 〈

â1â
†
2

〉
(k = 1, 2). In particular, we pay

special attention to the case of m̄c = m̄ and m̄k = 0 (k = 1, 2, s). Such a two-mode Gaussian
state is called the mixed EPR state [45] including the noisy two-mode squeezed vacuum state
which is the most important resource in continuous variable quantum information processing.
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The mixed EPR state is inseparable or entangled if and only if the inequality n̄1n̄2 < |m̄|2
holds. The inequality n̄k(n̄k + 1) � |m̄|2 (k = 1, 2) is always satisfied due to the uncertainty
relation. Using equation (23) or (25), we can obtain the time-evolution of the parameters n̄k

and m̄ under the influence of the non-Markovian quantum channel

n̄k(t) = n̄th + (n̄k − n̄th)γ
2
t m̄(t) = m̄γ 2

t . (41)

To obtain the entanglement of formation of the mixed EPR state, we need the covariance
matrix, the element of which is Mjk = (1/2)[〈x̂j x̂k〉 + 〈x̂kx̂j 〉], where (x̂1, x̂2, x̂3, x̂4) =
(q̂1, p̂, q̂2, p̂2), and q̂k and p̂k are canonical position and momentum operators of the kth
mode, respectively, satisfying the canonical commutation relation [q̂j , p̂k] = ih̄δjk . For the
mixed EPR state, we obtain the covariance matrix

M =




n̄1 + 1
2 0 −Re m̄ −Im m̄

0 n̄1 + 1
2 −Im m̄ Re m̄

−Re m̄ −Im m̄ n̄2 + 1
2 0

−Im m̄ Re m̄ 0 n̄2 + 1
2


 . (42)

The standard form of the covariance matrix is given by

Ms =




n̄1 + 1
2 0 |m̄| 0

0 n̄1 + 1
2 0 −|m̄|

|m̄| 0 n̄2 + 1
2 0

0 |m̄| 0 n̄2 + 1
2


 (43)

which is derived by the canonical transformation from the matrix M. It is found from
equation (25) that the matrix Ms of the mixed EPR state in the non-Markovian quantum
channel is obtained by replacing in equation (43) the parameters n̄k and m̄ with n̄k(t) and
m̄(t), respectively, given by equation (41). When the equality n̄1 = n̄2 holds, the mixed
EPR state is called symmetric. In the rest of this section, we consider the decoherence of the
entanglement of the symmetric mixed EPR state.

Since the symmetric mixed EPR state has the standard form of the covariance
matrix (43) with n̄1 = n̄2 (≡ n̄), under the influence of the non-Markovian quantum channel,
the entanglement of formation [46] is given by

EF (t) = −1 +
1

2

[
1

2

(
λ(t) +

1

λ(t)

)
+ 1

]
log2

[
1

2

(
λ(t) +

1

λ(t)

)
+ 1

]

− 1

2

[
1

2

(
λ(t) +

1

λ(t)

)
− 1

]
log2

[
1

2

(
λ(t) +

1

λ(t)

)
− 1

]
, (44)

where the parameter λ(t) is defined by

λ(t) = min[2n̄(t) − 2|m̄(t)| + 1, 1]. (45)

We can derive the inequality 0 < λ(t) � 1 from the uncertainty relation. The mixed EPR
state becomes separable if and only if the equality λ(t) = 1 holds which is equivalent to the
inequality n̄(t) � |m̄(t)|. Substituting equation (41) into equation (45), we obtain

λ(t) = min
[
2
(
n̄th + (n̄ − n̄th)γ

2
t

) − 2|m̄|2γ 2
t + 1, 1

]
. (46)

In particular, when the temperature of the thermal reservoir is zero, that is n̄th = 0, we obtain
λ(t) = min

[
2(n̄− m̄)γ 2

t + 1, 1
]
. Since the inequality

√
n̄(n̄ + 1) � |m̄| > n̄ is satisfied for the

initially entangled state, the inequality 1 > λ(t) > 0 is always established. This implies that
the mixed EPR state which is initially entangled remains entangled under the influence of the
non-Markovian thermal reservoir with n̄th = 0. The entanglement of formation is plotted in
figure 4. The figure shows that the non-Markovian effect of the thermal reservoir suppresses
the decoherence of entanglement of the symmetric mixed EPR state.
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Figure 4. The entanglement of formation of the symmetric mixed EPR state with n̄ = 3.0
and m̄ = 3.4 under the influence of the non-Markovian quantum channel, where (a) n̄th = 0.0,
(b) n̄th = 0.2, (c) n̄th = 1.0 and (d) n̄th = 4.0. In the figures, the solid line represents κτR = 2.0,
the dotted line κτR = 1.0, the short-dashed line κτR = 0.5, the dashed line κτR = 0.2 and the
dash-dotted line κτR = 0.0. The last corresponds to the Markovian limit.

5. Entanglement-breaking channel by the non-Markovian thermal reservoir

In this section, we obtain the condition that the non-Markovian quantum channel defined by
equations (11) and (21) becomes an entanglement-breaking channel. A quantum channel L̂
is called entanglement-breaking if (L̂⊗ Î)Ŵ is separable for any two-mode state Ŵ [47–49].
The condition for L̂ to be an entanglement-breaking channel is that for any single-mode state
ρ̂, there are quantum states ρ̂k and positive operator-valued measure M̂k such that [47, 48]

L̂ρ̂ =
∑

k

ρ̂k Tr[M̂kρ̂]. (47)

In the following, using the method developed in [50–52], we investigate whether the non-
Markovian quantum channel satisfies the continuous version of condition (47) [49].

From equations (11) and (21), the input–output relation of the Wigner function in the
non-Markovian quantum channel is given by

W(z; t) =
∫

d2z′

π

1

	t

e−|z−z′γt |2/	t W(z′; 0) (48)

with

	t = (
n̄th + 1

2

)(
1 − γ 2

t

)
. (49)
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Using the property of the Gaussian integration, we can formally rewrite equation (48) as

W(z; t) =
∫

d2z′

π

[
2

γ 2
t

(
	t − 1

2γ 2
t

) ∫
d2z′′

π
e−|z−z′′ |2/(	t− 1

2 γ 2
t ) e−2|z′′−z′γt |2/γ 2

t

]
W(z′; 0)

= 1

	t − 1
2γ 2

t

∫
d2z′′

π
e−|z−z′′ |2/(	t− 1

2 γ 2
t ) × 2

∫
d2z′

π
e−2|z′′−z′ |2W(z′; 0)

=
∫

d2z′′

π

[
1

Nt + 1
2

e−|z−z′′ |2/(Nt + 1
2 )

]
Q(z′′; 0), (50)

where Q(z; 0) is the Husimi Q-function of the initial quantum state ρ̂ and the parameter Nt is
given by

N (t) = 	t − 1

2
γ 2

t − 1

2
= n̄th

(
1 − γ 2

t

) − γ 2
t . (51)

If the parameter Nt is non-negative, we can define the thermal state ρ̂ th by the relation

ρ̂ th = 1

Nt

∫
d2z

π
e−|z|2/Nt |z〉〈z| (52)

the Wigner function of which is equal to the Gaussian distribution in [· · ·] of equation (50).
Here |z〉 is a coherent state.

Therefore, we find that the output state ρ̂(t) from the non-Markovian quantum channel is
expressed as

ρ̂(t) =
∫

d2z

π
D̂(zγt )ρ̂ thD̂

†(zγt )Q(z; 0), (53)

where D̂(z) is the displacement operator. Here, we define quantum state ρ̂z and positive
operator-valued measure M̂z by

ρ̂z = D̂(zγt )ρ̂ thD̂
†(zγt ) M̂z = 1

π
|z〉〈z| (54)

and we denote the non-Markovian quantum channel as L̂t . Then we can obtain the expression
of the non-Markovian quantum channel

L̂t ρ̂ =
∫

d2z

π
ρ̂z Tr[M̂zρ̂] (55)

which is equal to the continuous version of condition (47). This result implies that the
non-Markovian quantum channel is entanglement breaking. It is important to note that this
result is valid if the parameter Nt is non-negative, namely, Nt � 0. From equation (51), the
non-negativity of the parameter Nt is equivalent to the inequality

n̄th

n̄th + 1
� γ 2

t (56)

which is the condition that the non-Markovian quantum channel becomes entanglement
breaking. We find from equation (56) that if the temperature of the thermal reservoir is zero
(n̄th = 0), the non-Markovian quantum channel does not become entanglement breaking while
if the thermal reservoir has the infinitely high temperature (n̄th � 1), it is always entanglement
breaking. The time τB (the entanglement-breaking time) at which the non-Markovian quantum
channel becomes entanglement breaking is plotted as the function of the reservoir correlation
time τR in figure 5. It is easy to see from the figure that the entanglement-breaking time is
made longer by the non-Markovian effect of the thermal reservoir.
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Figure 5. The entanglement-breaking time κτB of the non-Markovian quantum channel, where
the solid line represents n̄th = 0.01, the dotted line n̄th = 0.05, the short-dashed line n̄th = 0.1,
the dashed line n̄th = 0.5, dash-dotted line n̄th = 1.0 and dash-dot-dotted line n̄th = 4.0.

6. Continuous variable quantum teleportation

In this section, we consider the continuous variable quantum teleportation [29] when a sender
and a receiver share the mixed EPR state through the non-Markovian quantum channel. In
this case, the Wigner function W(z1, z2; t) of the quantum state shared by the sender and the
receiver is given by

W(z1, z2) = 1

G(n̄1, n̄2, m̄; t)
exp

[
−�(z1, z2; n̄1, n̄2, m̄; t)

G(n̄1, n̄2, m̄; t)

]
(57)

with

�(z1, z2; n̄1, n̄2, m̄; t) = [
n̄2(t) + 1

2

]|z1|2 +
[
n̄1(t) + 1

2

]|z2|2 + m̄∗(t)z1z2 + m̄(t)z∗
1z

∗
2 (58)

and

G(n̄1, n̄2, m̄; t) = [
n̄1(t) + 1

2

][
n̄2(t) + 1

2

] − |m̄(t)|2 (59)

where n̄k(t) and m̄(t) are given by equation (41). To do the continuous variable quantum
teleportation, the sender who is provided an unknown quantum state ρ̂ in performs the
simultaneous measurement of position and momentum and informs the receiver of the
measurement outcome via a classical communication channel. The receiver who is known
the measurement outcome applies the displacement operator to her/his mode of the shared
quantum state, where the magnitude of the displacement depends on the measurement outcome.
Then the receiver obtains the quantum state ρ̂out in average [53, 54]

ρ̂out =
∫

d2α

π
G(α)D̂(α)ρ̂ inD̂

†(α), (60)

where the function G(α) is given by

G(α) =
∫

d2z

π
W(z∗ − α∗, α)

= 1

	(n̄1, n̄2, m̄; t)
exp

[
− |α|2

	(n̄1, n̄2, m̄; t)

]
(61)

with

	(n̄1, n̄2, m̄; t) = n̄1(t) + n̄2(t) + m̄∗(t) + m̄(t) + 1 (62)
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Figure 6. The fidelity of the coherent state obtained by the quantum teleportation by means of
the symmetric mixed EPR state with n̄ = 3.0 and m̄ = −2

√
3 under the influence of the non-

Markovian quantum channel, where (a) n̄th = 0.0, (b) n̄th = 0.1, (c) n̄th = 0.5 and (d) n̄th = 1.0
In the figures, the solid line represents κτR = 2.0, the dotted line κτR = 1.0, the short-dashed line
κτR = 0.5, the dashed line κτR = 0.2 and the dash-dotted line κτR = 0.0. The last corresponds
to the Markovian limit. F = 1/2 is the upper bound in the classical teleportation. The inequality
F > 1/2 implies the quantumness of the teleportation. F = 2/3 is the lower bound of the
non-cloning limit [55].

the non-negativity of which is ensured by the uncertainty relation. It is easy to see
from equations (60) and (61) that the performance of the continuous variable quantum
teleportation becomes higher as the parameter 	(n̄1, n̄2, m̄; t) is smaller. In the limit of
	(n̄1, n̄2, m̄; t) → 0, the complete quantum teleportation in which the teleported state is
identical with the original state is possible. For example, when a coherent state is teleported,
the fidelity F between the original and teleported states is given by

F = 1

1 + 	(n̄1, n̄2, m̄; t)
. (63)

Substituting equation (41) into equation (62), we obtain the time-dependence of the
parameter 	(n̄1, n̄2, m̄; t),

	(n̄1, n̄2, m̄; t) = (n̄th + 1)
(
1 − γ 2

t

)
+ 	(n̄1, n̄2, m̄; 0)γ 2

t . (64)

When the non-Markovian quantum channel is entanglement breaking, the inequality (56) is
satisfied. In this case, we can derive the inequality

	(n̄1, n̄2, m̄; t) � 2n̄th + 1

n̄th + 1
� 1 (65)

which provides the inequality F � 1/2. This means that when the quantum channel used
for sharing the mixed EPR state is entanglement breaking, the non-classical property of the
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quantum state cannot be teleported [54]. To show the non-Markovian effect on the continuous
variable quantum teleportation, the fidelity given by equation (63) is plotted in figure 6.
The non-Markovian effect makes better the performance of the continuous variable quantum
teleportation.

7. Concluding remarks

In this paper, we have considered the non-Markovian effect of the thermal reservoir on
the quantum information carried by single-mode and two-mode Gaussian states. We have
obtained the non-Markovian quantum channel by means of the projection operator method
that yields the time-convolutionless quantum master equation. We have investigated the
degradation of purity, distinguishability and non-classicality for single-mode Gaussian states
and the decoherence of entanglement of two-mode Gaussian states under the influence of the
non-Markovian thermal reservoir. The results show that the non-Markovian effect suppresses
the decoherence of the quantum states. We have also obtained the condition that the non-
Markovian quantum channel becomes an entanglement-breaking channel. Furthermore, we
have investigated the performance of the continuous variable quantum teleportation by means
of the mixed EPR state shared through the non-Markovian quantum channel.
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Appendix A. Derivation of equations (11)–(14)

To solve the differential equation (10) corresponding to the non-Markovian quantum master
equation, we introduce the function F̃ s(t; z) by the relation

F̃ s(t; z) = e−
(t,t ′)( ∂
∂z

z+ ∂
∂z∗ z∗)Fs(t; z), (A.1)

where the parameter 
(t, t ′) is given by equation (13). Using the commutation relation,

[∂2/∂z∂z∗, z∂/∂z + z∗∂/∂z∗] = 2∂2/∂z∂z∗ (A.2)

we can find that the function F̃ s(t; z) obeys the differential equation

∂

∂t
F̃ s(t; z) = [(1 + s)φ− +(t) + (1 − s)φ+ −(t)] e2
(t,t ′)

(
∂2

∂z∂z∗

)
F̃ s(t; z) (A.3)

which yields the solution

F̃ s(t; z) = eϒs(t,t
′) ∂2

∂z∂z∗ F̃ s(t
′; z′) (A.4)

with

ϒs(t, t
′) =

∫ t

t ′
dτ [(1 + s)φ− +(τ ) + (1 − s)φ+ −(τ )] e2
(τ,t ′). (A.5)

Thus the quasi-probability distribution Fs(t; z) is given by

Fs(t; z) = e
(t,t ′)( ∂
∂z

z+ ∂
∂z∗ z∗) eϒs(t,t

′) ∂2

∂z∂z∗ Fs(t
′; z′). (A.6)

The Green function G(t; z|t ′; z′) that satisfies equation (11) can be defined by

G(t; z|t ′; z′) = e
(t,t ′)( ∂
∂z

z+ ∂
∂z∗ z∗) eϒs(t,t

′) ∂2

∂z∂z∗ πδ(2)(z − z′). (A.7)
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Using the Fourier representation of the δ-function and the relation eaz∂/∂zf (z) = f (eaz), we
can obtain the Green function

G(t; z|t ′; z′) = e
(t,t ′)( ∂
∂z

z+ ∂
∂z∗ z∗) eϒs(t,t

′) ∂2

∂z∂z∗
∫

d2α

π
eα∗(z−z′)−α(z−z′)∗

= e2
(t,t ′)
∫

d2α

π
e−ϒ(t,t ′)|α|2 eα∗(ze
(t,t ′)−z′)−α(ze
(t,t ′)−z′)∗

= 1

	s(t, t ′)
exp

[
−|z − z′ e−
(t,t ′)|2

	s(t, t ′)

]
. (A.8)

where the parameter 	s(t, t
′) is given by equation (14). Therefore, we have derived

equations (11)–(14).
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